The majority of these patients had improved right ventricular function post thrombolysis. This small cohort study demonstrates the variability in the clinical presentations and physiological manifestations of massive PE, hence the need for early specialist input. The algorithm is an effective tool in identifying high mortality risk patients and those likely to develop pulmonary hypertension, thus allowing early specialist review and intervention.

Cough measurement, mechanisms and treatment

P150 THE DEVELOPMENT OF A COUGH HYPERSENSITIVITY QUESTIONNAIRE (CHQ)

doi:10.1136/thoraxjnl-2012-202678.211

J La-Crette, KK Lee, S Chamberlain, J Saito, J Hull, KF Chung, SS Birring. King’s College London, London, UK; Imperial College London, London, UK

Introduction and objectives Cough reflex hypersensitivity (CRH) is a key feature of most patients with a refractory chronic cough and has distinct clinical features of hypertussia, allotussia (cough due to non-tussive stimuli e.g. talking) and laryngeal paraeesthesia (throat tickle). Cough challenge tests, the gold standard used to identify CRH, are limited for clinical use because of the wide overlap between healthy subjects and chronic cough. We aimed to develop a patient reported cough hypersensitivity questionnaire (CHQ) to identify abnormal CRH symptoms and evaluated it in subjects with and without cough.

Methods The CHQ was developed following literature review, MDM and patient interviews. It assessed the presence and severity of cough triggers and laryngeal sensations on a Likert scale. It contained 35 items, score range 0–150. 38 Subjects (16 healthy, 10 refractory chronic cough (RCC: rhinitis, gastro-oesophageal reflux disease, asthma/eosinophilic bronchitis) and 12 respiratory disease (RD: bronchiectasis, sarcoidosis, interstitial lung disease and emphysema) with cough) completed the CHQ, LCQ (health status), capsaicin cough sensitivity (C5) and urge to cough VAS during capsaicin test.

Results Capsaicin cough reflex sensitivity, compared to healthy subjects, was increased in both RCC (geometric mean(logSD) C5 for RCC 18.1 (1.1) vs Normal 134.3 (0.8) p=0.0084) and RD (p=0.0126); figure 1. CHQ scores were raised in RCC compared to healthy subjects (p=0.0001) and RD (p=0.0068), figure 1. The upper limit of normal for CHQ score was 46. CHQ identified subjects with RCC better than C5. There was no significant relationship between CHQ and age or gender. CHQ was associated with logC5 (all subjects) r= –0.33, p=0.045 and health status (LCQ in RCC and RD) r= –0.58, p=0.006. There were no significant differences in mean(SD) urge to cough VAS during capsaicin test between subjects; healthy 52(25), RCC 39(24) and RD 54(29); p= 0.2317.

Conclusion In conclusion, this preliminary study suggests that laryngeal sensations and cough triggers assessed with the CHQ may identify patients with CRH. Further work is needed to repeat the study in a larger number of subjects, investigate whether the number of CHQ items could be reduced and to develop better objective tests of CRH.

Figure 1. Objective and subjective assessment of cough reflex hypersensitivity. C5: capsaicin cough reflex sensitivity; CHQ: cough hypersensitivity questionnaire; N: normal; RCC: refractory chronic cough; RD respiratory disease.

Abstract P150 Figure 1
be due to persistence of non-acid-reflux and pepsin causing ongoing laryngeal epithelial inflammation. We investigated: (a) the prevalence of pepsin reflux in respiratory patients requiring nasendoscopy for the investigation of upper airway symptoms; (b) the performance of commonly used clinical LPR-diagnostic tools in predicting the presence of salivary pepsin.

Methods Subjects had symptoms and signs of laryngeal inflammation quantified using, the Reflex Symptom Index (RSI) and Reflex Finding Score (RFS). Salivary pepsin was measured with a lateral flow device using monoclonal antibody labelling (PepTest, RDiBiomed). Patients with severe signs of laryngeal inflammation were referred for impedance-pH oesophageal studies to assess for objective evidence of reflux.

Results Of the 78 subjects recruited, 76% were female, mean age 55 (range 17–82). Ten were undergoing investigation for chronic cough, and 68 for possible vocal cord dysfunction (confirmed in 45). 30 had concomitant asthma, and 42 were prescribed anti-reflux treatment. 87% had a high RSI, and 51% a high RFS. Pepsin was detected in the saliva of 49/78 subjects (63%), and prevalence did not vary significantly between treatment group. There was a weak correlation between the RFS and pepsin concentration (r=0.28, p=0.01) and the positive and negative predictive values for pepsin detection for those with a high RFS were 65% and 69% respectively. To date all 8 patients tested have had significant proximal reflux on impedance study, of which 6 had a positive pepsin assay.

Conclusion Salivary pepsin was frequently present in patients with upper airway symptoms, but only weakly related to clinical findings of reflux, suggesting a high prevalence of LPR that is not associated with typical laryngeal findings. The significance of such sub-clinical reflux remains to be seen however the use of pepsin assay in patients with upper airway symptoms may be most valuable in directing diagnosis in milder cases where symptoms and signs lack specificity and the condition may otherwise be missed.

THE IMPACT OF A SELECTIVE ORAL TRPV1 ANTAGONIST IN PATIENTS WITH CHRONIC COUGH

Methods

Objective evidence of reflux.

Results

Of the 78 subjects recruited, 76% were female, mean age 55 (range 17–82). Ten were undergoing investigation for chronic cough, and 68 for possible vocal cord dysfunction (confirmed in 45). 30 had concomitant asthma, and 42 were prescribed anti-reflux treatment. 87% had a high RSI, and 51% a high RFS. Pepsin was detected in the saliva of 49/78 subjects (63%), and prevalence did not vary significantly between treatment group. There was a weak correlation between the RFS and pepsin concentration (r=0.28, p=0.01) and the positive and negative predictive values for pepsin detection for those with a high RFS were 65% and 69% respectively. To date all 8 patients tested have had significant proximal reflux on impedance study, of which 6 had a positive pepsin assay.

Conclusion Salivary pepsin was frequently present in patients with upper airway symptoms, but only weakly related to clinical findings of reflux, suggesting a high prevalence of LPR that is not associated with typical laryngeal findings. The significance of such sub-clinical reflux remains to be seen however the use of pepsin assay in patients with upper airway symptoms may be most valuable in directing diagnosis in milder cases where symptoms and signs lack specificity and the condition may otherwise be missed.

THE IMPACT OF TRPV1 ANTAGONISM ON THE TREATMENT OF SEASONAL ALLERGIC RHINITIS

Methods

The study involved 70, male and female, subjects with proven rhinitis in a randomised, double-blind, placebo-controlled, 3-way incomplete block crossover design in a well validated Aller- gen Challenge Chamber paradigm in Vienna. Subjects received Placebo, FP (200ug), SB705498 (12mg), or FP+498. Subjects were dosed for 8 days, within the pollen season, before being exposed to a chamber challenge on the 8th day. TNSS was the primary endpoint recorded for the 4 hours in the chamber. The comparisons of interest were FP+498 vs. FP, and 498 vs. Placebo. Additional endpoints consisted of symptoms over the 8 days of dosing, Active Anterior Rhinomanometry, Rhinometry, Nasal Impedance, QOL, PK and tolerability. Each period was separated by 14–20 days.

Results

There was no evidence of a decrease in symptoms with FP+498 compared to FP alone, or for 498 compared to Placebo. Statistically significant and clinically relevant reductions in TNSS compared with Placebo were observed at all time points during the challenge for FP and FP+498. The mean (95% CI) reduction in weighted mean TNSS was –2.94 (–3.38, –2.50) for FP alone and-2.28 (–2.79, –1.78) for the combination.
P151 Laryngopharyngeal Pepsin Reflux in Patients with Upper Airway Symptoms

A Spyridoulias, S Lillie, A Vyas, et al.

Thorax 2012 67: A127-A128
doi: 10.1136/thoraxjnl-2012-202678.212

Updated information and services can be found at:
http://thorax.bmj.com/content/67/Suppl_2/A127.2

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Inflammation (855 articles)
Asthma (1516 articles)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/